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Motivation

Real-world data naturally multidim., w/ different characteristics:

Hyperspectral images (classification)1

1Bannon,”Hyperspectral imaging: Cubes and Slices,” Nature Photonics, 2009.
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Motivation

Real-world data naturally multidim., w/ different characteristics:

Discrete solutions, u(xj, yi, tk) to PDEs1

1Jiani Zhang, Tufts Mathematics Ph.D. Thesis, “Design and Application of
Tensor Decompositions to Problems in Model and Image Compression and
Analysis,” 2017.
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Motivation

Traditional algorithms for compressing, analyzing, clustering data
done by ‘unfolding’ this data into a matrix, or 2D array, and
employing matrix algebra tools.
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Motivation

CLAIM: Traditional matrix-based methods for dim reduction,
classification, training, based on vectorizing data generally do not

make the most of possible high dimensional correlations/structure for
compression and analysis.

There is much to be gained by designing mathematical and
computational techniques for the data in its natural form.

Review current mathematical definitions, constructs, theory,
algorithms, for multiway data compression + applications.
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Tensors: Definition

X ∈ Rn1×n2×···×nj ← j-th order tensor

1st-order tensor:

2nd-order tensor:

3rd-order tensor:

4th-order tensor: · · ·
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Notation

Uppercase Script: A, is a 3rd order tensor.

Uppercase Bold: X, is a matrix.

Bold lowercase: y, is a vector OR a 1× 1× n tensor.
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Data Organization Reveals Latent Structure

Suppose y ∈ Rmn

Reshape as m× n matrix,
Y = uv> = u ◦ v

⇒ y = v ⊗ u =


v1u
v2u

...
vnu



Implies storage is reduced from mn to m+ n numbers.
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Data Organization Reveals Latent Structure

Suppose y ∈ Rmn

Reshape as m× n matrix,
Y = uv> = u ◦ v

⇒ y = v ⊗ u =


v1u
v2u

...
vnu



Implies storage is reduced from mn to m+ n numbers.

Moving to higher dimensions reveals compressible structure.
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Goals

Uncover hidden patterns in data by computing an appropriate
tensor decomposition/approximation?

Use this to compress or constrain data in applications.

Patterns are application dependent, the type of tensor
decomposition should respect this.

Consider tensor decompositions that are synonymous with
‘factorization’ in a matrix-mimetic sense vs. those that are not.
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Reference, Toolbox

Required reading for my students: Kolda and Bader, “Tensor
Decompositions and Applications,” SIAM Review, Vol. 51, 2009.

MATLAB Tensor Toolbox Version 3.1, Available online, June 2019.
URL: https://gitlab.com/tensors/tensor_toolbox

There are other free toolboxes as well that use slightly different
constructs.
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Notation - The Basics2

Modes: the different dimensions

Fibers: hold all indicies fixed except 1

Slices: hold all indicies fixed except 2

2graphics: Elizabeth Newman, “A Step in the Right Dimension,” Tufts
Ph.D. Thesis, 2019
Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 10 / 67



Norms

Norm is extension of Frobenius norm:

‖A‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

a2
i1,...,ıN

.

If X,Y of same dimension, can take an inner-product (collapsing
along dimensions) to a scalar:

< X,Y >=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1,...,ıNyi1,...,iN .
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Matricization3

A tensor “matricization” refers to (specific) mappings of the tensor
to a matrix. The nth mode unfolding maps A to A via
(i1, . . . , iN)→ (in, j), and

j = 1 +
N∑

k=1,k 6=n

(ik − 1)

(
k−1∏

m=1,m6=n

Im

)
.

A graphical illustration is illuminating:

3graphics: Elizabeth Newman, Tufts Mathematics Ph.D. Thesis, “A Step in
the Right Dimension,” 2019
Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 12 / 67



Matricization3

3graphics: Elizabeth Newman, Tufts Mathematics Ph.D. Thesis, “A Step in
the Right Dimension,” 2019
Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 12 / 67



Tensor-Matrix products

C = A×n X←→ C(n) = X ·A(n)

Note that
A×m X×n Y = A×n Y ×m X.

Frontal slice A:,:,k

Example: Ã := A×1 X×2 Y ⇒ Ã:,:,i = XA:,:,iY
>
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Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

PCA - directions of most variability; projections in ‘dominant’
directions allows for dim reduction/relative comparison

Compression (reduce near redundancies) via truncated SVD
expansion is optimal (Eckart-Young Theorem)

A = USV> =
∑r

i=1 σi(u
(i) ◦ v(i)), σ1 ≥ σ2 ≥ · · · ≥ 0

B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r
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Traditional workhorse, dim reduction/feature extraction: matrix SVD

PCA - directions of most variability; projections in ‘dominant’
directions allows for dim reduction/relative comparison

Compression (reduce near redundancies) via truncated SVD
expansion is optimal (Eckart-Young Theorem)

A = USV> =
∑r

i=1 σi(u
(i) ◦ v(i)), σ1 ≥ σ2 ≥ · · · ≥ 0

B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r

Implicit storage: for an m× n, p(n+m) numbers stored, vs mn.
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Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

PCA - directions of most variability; projections in ‘dominant’
directions allows for dim reduction/relative comparison

Compression (reduce near redundancies) via truncated SVD
expansion is optimal (Eckart-Young Theorem)

A = USV> =
∑r

i=1 σi(u
(i) ◦ v(i)), σ1 ≥ σ2 ≥ · · · ≥ 0

B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r

Question: What’s the right high-dimensional analogue? (history, see
Kolda & Bader)
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Rank-1 Tensor

Idea 1 (Hitchcock, 1927): Like SVD, try to decompose as a sum of
rank-1 tensors.

X = a ◦ b ◦ c⇒ X`,j,k = a`bjck

Note that vec(X) = c⊗ b⊗ a.

Thus, some papers use Kronecker in place of outer-product notation.
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Tensor Decompositions - CP

CP (CANDECOMP-PARAFAC) Decomposition :

X ≈
r∑

i=1

a(i) ◦ b(i) ◦ c(i)

I If equality & r minimal, then r is called the rank of the tensor
I Not generally orthogonal
I Not based on a ‘product based factorization’
I Finding the rank is NP hard!
I No perfect procedure for fitting CP model to k terms
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Kruskal Notation

X ≈
r∑

i=1

a(i) ◦ b(i) ◦ c(i)

Kruskal notation: JA,B,CK or, if unit-normalized Jλ;A,B,CK.
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Demo - Chemical Mixing

Bro, R, Multi-way Analysis in the Food Industry. Models,
Algorithms, and Applications. 1998. Ph.D. Thesis, Univ. of
Amsterdam (NL) & Royal Veterinary and Agricultural University
(DK). (see http://www.models.kvl.dk/amino_acid_fluo )

5, simple lab-made samples.

Each sample: vary amts. tyrosine, tryptophan and phenylalanine
dissolved in phosphate buffered water.

Samples measured by fluorescence (excitation 250-300 nm,
emission 250-450 nm, 1 nm intervals)

51× 201× 5 tensor

Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor
Toolbox Version 3.1, Available online, June 2019. URL:
https://gitlab.com/tensors/tensor_toolbox

Matlab script: Thanks, T. Kolda, July 2019

Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 18 / 67

http://www.models.kvl.dk/amino_acid_fluo
https://gitlab.com/tensors/tensor_toolbox


Math Interpretation

Each of the three chemicals has fluorescence signature described as
u(i) ◦ v(i), i = 1, 2, 3.

The jth sample is w
(j)
1 u(1) ◦ v(1) + w

(j)
2 u(2) ◦ v(2) + w

(j)
3 u(3) ◦ v(3).

Then, if the samples are the frontal slices, we ideally should have

A =
3∑

i=1

u(i) ◦ v(i) ◦w(i)

Independent of orientation...
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Some Results
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CP Example

Importance of fitting right number of terms; starting guesses.
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Other Decompositions

Other decompositions in the literature:

Tucker (and HOSVD)

Tensor Train (TT), hierarchical TT (ex: Tensor-Train
Decomposition, Ivan Oseledets, SISC, 2011)

Matrix-mimetic decompositions based on tensor-tensor products
(K. & Martin 2011; Kernfeld, K., Aeron 2015) and
corresponding algebraic framework.

I Highly parallelizable
I Amenable to orientation dependent data
I Robust (e.g. to overfitting)

Each has advantages/disadvantages. The choice of decomposition
should be application dependent!
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Truncated Tucker/HOSVD

Tucker-3 Decomposition :

X ≈ C×1 G×2 T×3 S =

r1∑
i=1

r2∑
j=1

r3∑
k=1

cijk(g(i) ◦ t(j) ◦ s(k))

C is the core tensor, not generally diagonal or non-neg.

G, T, S w/ orthonormal cols = HOSVD (De Lathauwer, et. al)

Specify 3 ranks (r1, r2, r3); truncation not-optimal

Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 23 / 67



HOSVD, ST-HOSVD

Computing the HOSVD for a 3rd-order tensor based on using the left
singular vectors of the SVDs of the matricizations:

Compute U(1) from SVD of A(1).

Compute U(2) from SVD of A(2)

Compute U(3) from SVD of A(3).

C = A×1 U
(1) ×2 U

(2) ×3 U
(3)

We can truncate terms to get a compressed representation. For
m× p× n, numbers stored:

O(mk1 + pk2 + nk3 + k1k2k3)

We can also sequentially truncate4 In our experience, little difference
on performanace for applications. (Will depend on processing order).

4N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation
strategy for the higher-order singular value decomposition,” SIAM J. Sci.
Comput, pp, 2012.
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Large Scale Data Compression

Ballard, Klinvex, Kolda, “TuckerMPI: A Parallel C++/MPI Software
Package for Large-scale Data Compression via the Tucker Tensor
Decomposition,” arXiv, 2019.

“We test the software on 4.5 terabyte and 6.7 terabyte data sets
distributed across 100s of nodes (1000s of MPI processes), achieving
compression ratios between 100200,000 which equates to 99-99.999
% compression (depending on the desired accuracy) in substantially
less time than it would take to even read the same dataset from a

parallel file system”
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Randomized Variants

Capitalizing on recent successes in randomized numerical linear
algebra, develop randomized variants.

Che and Wei. “Randomized algorithms for the approximations of
Tucker and the Tensor Train decompositions.” Advances in
Computational Mathematics, 2018.

Minster, Saibaba, K, “Randomized Algorithms for Low-rank Tensor
Decompositions in the Tucker Format,” SIAM J. Mathematics of
Data Sci., to appear.

Randomized variants that respect sparsity of the datasets.
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Randomized Variants that Handle Sparsity

Formidable Repository of Sparse Tensors and Tools database.

Tensor Dimensions Nonzeros
NELL-2 12092 × 9184 × 28818 76,879,419
Enron 6066 × 5699 × 244268 × 1176 54,202,099

NELL-2: entity × relation × entity (NELL is a machine learning
system that relates different categories)

Enron: sender × receiver × word × date (word counts in emails
released during an investigation by the FERC)

Approximate truncated (r, r, r) HOSVD and ST-HOSVD
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Results

Relative Error Runtime in seconds
r SP-STHOSVD R-STHOSVD SP-STHOSVD R-STHOSVD

20 0.6015 0.2081 0.4086 31.5615
45 0.3854 0.1259 0.7965 34.5802
145 0.0976 0.0332 3.5659 42.0969
195 0.0578 0.0180 6.8285 50.2907

Table: Results, Subsampled Enron dataset.

Taking advantage of the sparsity structure allows for faster
compression5.

5R. Minster, A.K. Saibaba, and M. E. Kilmer, “Randomized Algorithms for
low-rank Decompositions in the Tucker Format,” SIMODS, to appear.
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TT and TT-SVD6

Suppose we can express each element of A ∈ Rn1×n2×···×nd as

Ai1,i2,...,id = (G1):,:,i1 · (G2):,:,i2 · · · (Gd):,:,id

where each Gk is a core of size rk−1 × rk × nk and (Gk):,:,ik is an
rk−1 × rk matrix, with r0 = rd = 1,

Then, the TT-rank is the length-(d+ 1) tuple r = (r0, r1, . . . , rd)

Gk is a stack of nk matrices of size rk1 × rk.

Storage:
∑d

k=1 rk−1nkrk

6V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput, 2011
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3rd Order Example

Example: 3rd order,

Ai,j,k = (G1)1,:,i · (G2):,:,j · (G3):,1,k

and (G1)1,:,i is 1× r1, (G2):,:,j is r1 × r2, (G3):,1,k is r2 × 1.

If r1 = r2 = 1, then this reduces to a CP decomposition format.
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TT SVD, 3rd Order7

From a mode-wise unfolding:

7Graphics: Newman, Tufts Ph.D. Thesis, 2019
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So Far...

We have seen:

CP, which is orientation independent, but no orthogonality, hard
to find k, difficulties with algorithms

HOSVD, orientation independent, orthogonal factor matrices,
but no optimality on truncation with dense core.

ST-HOSVD, process orientation dependent, orthogonal factor
matrices, truncations prespecified

TT-SVD, repeated unfoldings (process orientation dependent)
and accumulating truncation errors, can be highly compressive

None relates to a framework wherein there is a product-based
factorization of tensors. Optimality bounds, but no Eckart-Young like
results.
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Tensor-Tensor Products

Orientation Dependent Data: Storage as mn× J matrix A or
m× J × n tensor A? Which is more compressible/interpretable?
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Tensor-Tensor Products

Products between tensors of appropriate dimension that are well
defined8

This allows us to define different tensor decompositions!

8K. and Martin, LAA (2011); Kernfeld, K, Aeron, LAA (2015)
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Notation

The basics

Tensor A Lateral slice ~AjFrontal slice A(k) Tube fibers aij

Indexing also done using MATLAB-like notation: e.g. ~Aj = A:,j,:.

Find a way to express a tensor that leads to the possibility for
compressed representation that maintains important features of the

original tensor.
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Outline for Remainder

Algebraic framework for tensors as operators
I Tensor-tensor products
I Identities, transposes, orthogonality, etc.

Tensor-tensor SVDs reminiscent of matrix SVD

Eckart-Young theorem

Randomized variants

Applications (incl. POD)

K. & Martin, LAA 2011 K., Braman, Hoover, Hao, SIMAX 2013 Kernfeld, K,
Aeron, 2015
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Operations for Tensor Manipulation

If ~Aj is m×1×n, then sq(~Aj) = Aj is m×n.

~Aj −→ Aj

Inverted by ‘twisting’.
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Mode-3 Multiplication

Lateral slices ~Aj of m× p× n tensorA

A(3) := [sq(~A1)>, sq(~A2)>, . . . , sq(~Ap)
>]

Let M be r × n. To find A×3 M:

Compute matrix-matrix product MA(3),

Reshape the result to an m× p× r tensor.

Equivalent to applying M along tube fibers.

Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 38 / 67



Star-M Product

Let M be any invertible, n× n matrix. Then

Â = A×3 M and A = Â×3 M
−1.

Definition
Given any invertible, n× n M, A ∈ Cm×p×n and B ∈ Cp×`×n,
C = A ?M B is defined via Ĉ:,:,i = Â:,:,iB̂:,:,i.

A
‹M

Spatial domain

B ˆ3M pA
Ÿ

Transform domain

pB ˆ3M´1 C

Spatial domain

9

9Kernfeld,K, Aeron, LAA 2015
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Special Case: The t-product

Special Case: Let M be the unnormalized DFT matrix10.

The t-product can be computed in-place using FFTs:

Â← fft(A, [ ], 3)

B̂← fft(B, [ ], 3)

Ĉ:,:,i = Â:,:,i · B̂:,:,i, i = 1, . . . , n

C = ifft(Ĉ, [ ], 3)

10K. and Martin, 2011
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Other Properties

Definition (Conjugate Transpose)

Given A ∈ Cm×p×n its p×m× n conjugate transpose under ?M

AH is defined such that (Â
H

)(i) = (Â
(i)

)H, i = 1, . . . , n.

Definition (Unitary/Orthogonal Tensors)

Q ∈ Cm×m×n (Q ∈ Rm×m×n) is called ?M -unitary (?M -orthgonal) if

QH ?M Q = I = Q ?M QH,

where H is replaced by transpose for real tensors. Note that I also
defined under ?M .

Kernfeld,K, Aeron, LAA 2015
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Entry-wise M-product

c
=

a

?M
b

Tube fiber interpretation:

c = fold
(
(M−1diag(â)M)vec(b)

)
= fold

(
(M−1diag(b̂)M)vec(a)

)
Commutativity, and characterization using set of diagonal matrices
diagonalized by M and its inverse.
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Entry-wise M-product

c
=

a

?M
b

Tube fiber interpretation:

c = fold
(
(M−1diag(â)M)vec(b)

)
= fold

(
(M−1diag(b̂)M)vec(a)

)
Commutativity, and characterization using set of diagonal matrices
diagonalized by M and its inverse.

Special Case: M is DFT ⇒ convolution, circulant matrices
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Matrix-mimeticity

Observation: overloading scalar products with ?M in matrix-matrix
algorithms gives product for larger dimensional tensors.

If A is m×k×n and B is k×p×n, then C is m×p×n, and

~Cj

=

k∑
i=1

~Ai

?M

bij

j = 1, . . . , p
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Unitary Invariance

Theorem
If M a non-zero multiple of a unitary/orthogonal matrixa

‖Q ?M A‖F = ‖A‖F
aK., Horesh, Avron, Newman (2019)
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Tensor-tensor SVDs

Theorem (K., Horesh, Avron, Newman)

Let A be a m× p× n tensor and M a non-zero multiple of a
unitary/orthogonal matrix. The (full) ?M tensor SVD (t-SVDM) is

A = U ?M S ?M VH =

min(m,p)∑
i=1

U:,i,: ?M Si,i,: ?M VH
:,i,:

with U, V ?M -unitary, & ‖S1,1,:‖2
F ≥ ‖S2,2,:‖2

F ≥ . . .
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Algorithm

1: Â← A×M M
2: for all i = 1, . . . , n do
3: [Û:,:,i, Ŝ:,:,i, V̂:,:,i] = svd([Â:,:,i]) % note: rank Â:,:,i is ρi.
4: end for
5: U = Û×3 M

−1, S = Ŝ×3 M
−1, V = V̂×3 M

−1.

Perfectly parallelizable!

For face i, exist singular values σ̂
(j)
i , j = 1, .., ρi
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Eckart-Young

A ∈ Rm×p×n. For k < min(m, p), and M as previously, define

Ak =
k∑

i=1

U:,i,: ?M
(
Si,i,: ?M V>:,i,:

)
Then

Ak = arg min
Ã∈Ω
‖A− Ã‖F

where Ω = {X ?M Y |X ∈ Rm×k×n,Y ∈ Rk×p×n}

Error: ‖A−Ak‖2
F =

∑
j>k

‖Sj,j‖2
F = c

n∑
i=1

∑
j>k

σ̂
(i)
j , c depends on M.
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Application: Facial Recognition when M is DFT11

~Xj, j = 1, 2, . . . ,m are the training images
~Y is the mean image
~Aj = ~Xj − ~Y has the mean-subtracted images

Left orthogonal U contains the principal components, so

~Aj ≈ U:,1:k,: ?M (U>:,1:k,: ?M
~Aj)︸ ︷︷ ︸

tensor coeffs

Compare tensor coefficients with U>:,1:k,: ?M
~B, for a training

image (tensor) ~B.
11Hao, K., Braman, Hoover, SIIMS (2013)
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Facial Recognition Task

Experiment 1: randomly select 15 images of each person as
training, test all remaining images

Experiment 2: randomly selected 5 images of each person as
training, test all remaining images

20 trials for each experiment

The Extended Yale Face Database B,

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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t-SVD vs. PCA
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Data Comparison

In general, consider J pieces of 2D, m× n data. Storage as mn× J
matrix A or m× J × n tensor A. Which is more compressible?
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Theoretical Result

Theorem (K.,Horesh,Avron,Newman (2019))

Suppose Ak is optimal k-term t-SVDM approximation to A, and let
Ak is optimal k-term matrix SVD approximation to A. Then

‖A−Ak‖F ≤ ‖A−Ak‖F ,

where strict inequality is achievable.

Result works for any M that is multiple of unitary (orthogonal)
matrix.

Why? Takes advantage of latent structure in data.

Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 52 / 67



t-SVDMII

Truncated t-SVDM ignores relative importance of faces.

Global approach: order σ̂
(j)
i := Ŝi,i,j, truncate on energy level.

Gives Aρ, with ρi = rank(Â
(i)
.)
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Comparison

Implicit rank = total number of non-zero σ̂
(j)
i .

Theorem (K.,Horesh,Avron,Newman, 2019)

Let Ak be the t-SVDM t-rank k approximation to A, and suppose
its implicit rank is r. Define µ = ‖Ak‖2

F/‖A‖2
F . There exists γ ≤ µ

such that the t-SVDMII approximation, Aρ, obtained for this γ, has
implicit rank less than or equal to the implicit rank of Ak and

‖A−Aρ‖F ≤ ‖A−Ak‖F ≤ ‖A−Ak‖F .
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Yale Example
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Truncated-HOSVD in the ?M Framework

Define M = (U(3))> from the HOSVD. Then we can express the
HOSVD in our tensor framework, and we can show that our t-SVDM,
t-SVDMII are superior to tr-HOSVD for appropriate truncation levels,

as well.
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Data Compression

Not all tensor decompositions are created equal!

(a) Orig (b) tr-tSVDM2 (c) tr-Mtx

(d) tr-H(m, 25, n) (e) tr-H(70, 53, 53)
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Other Data? An Application in POD.

Discretize dynamical system by nx, ny points in space.

∂ū(t)

∂t
= Aū(t) + f(ū(t)) + q(t), t ≥ 0

Want ū ≈ Prū = BB>ū︸︷︷︸
ũ

where B = [b1, . . . ,br] is orthonormal

basis for projected state space.

Then we replace ū(t) by Bũ, and solve the projected problem:

∂ũ(t)

∂t
= B>ABũ(t) + B>f(Bũ(t)) + B>q(t)
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An Application in POD

In practice, get a snapshot matrix X = [ū(1), . . . , ū(s)] & B solves

min
B∈Rn×r

‖X−BB>X‖F s.t. B>B = I.

Thus, B is the first r left singular vectors of X.
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An Application in POD

Our idea12: Compute the snapshot tensor, we construct B from the
left singular tensor instead, since the t-SVDM (t-SVDMII) solves the

optimization problem under ?M .

So far, we have tested this for M being the DFT matrix.

(Ultimately, forming the projected problem requires some
manipulation back in ’matrix-vector’ land.)

12See Jiani Zhang’s Ph.D. Thesis, Tufts, 2017
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Example

Diffusion Equation: ∂u(r,t)
∂t
−∇ · κ∇u(r, t) = 0

Figure: The sample snapshots of solution ūj , j = 1 , 3, 7, 9, 12, 15Misha E. Kilmer (Tufts University) Tensor Tutorial 2020 61 / 67



Better Basis? - Numerical Support

Diffusion Equation: ∂u(r,t)
∂t
−∇ · κ∇u(r, t) = 0

Figure: The first three basis vectors from SVD.
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Better Basis? - Numerical Support

Diffusion Equation: ∂u(r,t)
∂t
−∇ · κ∇u(r, t) = 0

Figure: The first three basis slices from t-SVD.
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Better Basis? - Numerical Support

Diffusion Equation: ∂u(r,t)
∂t
−∇ · κ∇u(r, t) = 0
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Computation Cost

What about the computational cost comparison?

Computing basis: tensor SVD, independent matrix computations in
the transform domain

Size of reduced model: nyk (“expensive” by comparison to k), if
we assume same value of k needed in matrix vs. tensor case.

Two improvements that address cost issue (details omitted)

Use t-SVDMII.

Reduce snapshot data from two directions (sequential truncation
variant!).
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Prelim Results with Enhancements, k = 30

Diffusion Equation: ∂u(r,t)
∂t
−∇ · κ∇u(r, t) = 0
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Summary

Multiway data can be compressed through various tensor
decompositions; only covered a small number

The various decompositions offer distinct features, some may be
better than others on certain applications

Randomized variants possible (see also Zhang et al, for
randomized t-SVD) for speed

Variants available the addess concerns with sparsity

Parallelizable computations and memory efficient computations

Showed only one POD example, but other uses of tensors in
context of ROM are still under investigation

Great deal of matrix-structure that I barely touched on, there
may be more problems amenable to tensor treatment
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